Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(4): 554-564, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266068

RESUMO

Assessment of pancreas cell type composition is crucial to the understanding of the genesis of diabetes. Current approaches use immunodetection of protein markers, for example, insulin as a marker of ß-cells. A major limitation of these methods is that protein content varies in physiological and pathological conditions, complicating the extrapolation to actual cell number. Here, we demonstrate the use of cell type-specific DNA methylation markers for determining the fraction of specific cell types in human islet and pancreas specimens. We identified genomic loci that are uniquely demethylated in specific pancreatic cell types and applied targeted PCR to assess the methylation status of these loci in tissue samples, enabling inference of cell type composition. In islet preparations, normalization of insulin secretion to ß-cell DNA revealed similar ß-cell function in pre-type 1 diabetes (T1D), T1D, and type 2 diabetes (T2D), which was significantly lower than in donors without diabetes. In histological pancreas specimens from recent-onset T1D, this assay showed ß-cell fraction within the normal range, suggesting a significant contribution of ß-cell dysfunction. In T2D pancreata, we observed increased α-cell fraction and normal ß-cell fraction. Methylation-based analysis provides an accurate molecular alternative to immune detection of cell types in the human pancreas, with utility in the interpretation of insulin secretion assays and the assessment of pancreas cell composition in health and disease.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Metilação de DNA , Pâncreas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo
2.
Diabetes ; 72(12): 1809-1819, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725835

RESUMO

The importance of glucokinase (GK) in the regulation of insulin secretion has been highlighted by the phenotypes of individuals with activating and inactivating mutations in the glucokinase gene (GCK). Here we report 10 individuals with congenital hyperinsulinism (HI) caused by eight unique activating mutations of GCK. Six are novel and located near previously identified activating mutations sites. The first recognized episode of hypoglycemia in these patients occurred between birth and 24 years, and the severity of the phenotype was also variable. Mutant enzymes were expressed and purified for enzyme kinetics in vitro. Mutant enzymes had low glucose half-saturation concentration values and an increased enzyme activity index compared with wild-type GK. We performed functional evaluation of islets from the pancreata of three children with GCK-HI who required pancreatectomy. Basal insulin secretion in perifused GCK-HI islets was normal, and the response to glyburide was preserved. However, the threshold for glucose-stimulated insulin secretion in perifused glucokinase hyperinsulinism (GCK-HI) islets was decreased, and glucagon secretion was greatly suppressed. Our evaluation of novel GCK disease-associated mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. ARTICLE HIGHLIGHTS: Our evaluation of six novel and two previously published activating GCK mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. These studies provide insights into the pathophysiology of GCK-hyperinsulinism and the dual role of glucokinase in ß-cells and α-cells to regulate glucose homeostasis.


Assuntos
Hiperinsulinismo Congênito , Hiperinsulinismo , Criança , Humanos , Glucoquinase/genética , Glucagon , Hiperinsulinismo Congênito/genética , Hiperinsulinismo/genética , Glucose , Mutação , Fenótipo
3.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107856

RESUMO

Friedreich ataxia, the most common hereditary ataxia, is a neuro- and cardio-degenerative disorder caused, in most cases, by decreased expression of the mitochondrial protein frataxin. Cardiomyopathy is the leading cause of premature death. Frataxin functions in the biogenesis of iron-sulfur clusters, which are prosthetic groups that are found in proteins involved in many biological processes. To study the changes associated with decreased frataxin in human cardiomyocytes, we developed a novel isogenic model by acutely knocking down frataxin, post-differentiation, in cardiomyocytes derived from induced pluripotent stem cells (iPSCs). Transcriptome analysis of four biological replicates identified severe mitochondrial dysfunction and a type I interferon response as the pathways most affected by frataxin knockdown. We confirmed that, in iPSC-derived cardiomyocytes, loss of frataxin leads to mitochondrial dysfunction. The type I interferon response was activated in multiple cell types following acute frataxin knockdown and was caused, at least in part, by release of mitochondrial DNA into the cytosol, activating the cGAS-STING sensor pathway.


Assuntos
Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Interferon Tipo I , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas Mitocondriais/metabolismo , Ferro/metabolismo , DNA Mitocondrial/metabolismo , Nucleotidiltransferases/metabolismo , Enxofre/metabolismo
4.
Redox Biol ; 56: 102457, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063729

RESUMO

We previously reported a depletion of murine regenerating islet-derived protein 2 (REG2) in pancreatic islets of glutathione peroxidase-1 (Gpx1) overexpressing (OE) mice. The present study was to explore if and how the REG2 depletion contributed to an augmented glucose stimulated insulin secretion (GSIS) in OE islets. After we verified a consistent depletion (90%, p < 0.05) of REG2 mRNA, transcript, and protein in OE islets compared with wild-type (WT) controls, we treated cultured and perifused OE islets (70 islets/sample) with REG2 (1 µg/ml or ml · min) and observed 30-40% (p < 0.05) inhibitions of GSIS by REG2. Subsequently, we obtained evidences of co-immunoprecipitation, cell surface ligand binding, and co-immunofluorescence for a ligand-receptor binding between REG2 and transmembrane, L-type voltage-dependent Ca2+ channel (CaV1.2) in beta TC3 cells. Mutating the C-type lectin binding domain of REG2 or deglycosylating CaV1.2 removed the inhibition of REG2 on GSIS and(or) the putative binding between the two proteins. Treating cultured OE and perifused WT islets with REG2 (1 µg/ml or ml · min) decreased (p < 0.05) Ca2+ influx triggered by glucose or KCl. An intraperitoneal (ip) injection of REG2 (2 µg/g) to OE mice (6-month old, n = 10) decreased their plasma insulin concentration (46%, p < 0.05) and elevated their plasma glucose concentration (25%, p < 0.05) over a 60 min period after glucose challenge (ip, 1 g/kg). In conclusion, our study identifies REG2 as a novel regulator of Ca2+ influx and insulin secretion, and reveals a new cascade of GPX1/REG2/CaV1.2 to explain how REG2 depletion in OE islets could decrease its binding to CaV1.2, resulting in uninhibited Ca2+ influx and augmented GSIS. These findings create new links to bridge redox biology, tissue regeneration, and insulin secretion.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Glicemia/metabolismo , Glucose/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ligantes , Camundongos , Proteínas Associadas a Pancreatite/metabolismo , RNA Mensageiro/metabolismo , Glutationa Peroxidase GPX1
5.
J Clin Invest ; 132(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642629

RESUMO

BACKGROUNDMultiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA+ state may represent an early stage of T1D.METHODSHere, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA+ and T1D donors.RESULTSSimilar to the few remaining ß cells in the T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA+ and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA+ α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor ß (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA+ donor islets.CONCLUSIONWe found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when ß cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D.FUNDINGThis work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593).


Assuntos
Diabetes Mellitus Tipo 1 , Glutamato Descarboxilase , Autoanticorpos , Glucagon , Glucose , Humanos
6.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34752420

RESUMO

Glucagon, a hormone released from pancreatic α cells, plays a key role in maintaining euglycemia. New insights into the signaling pathways that control glucagon secretion may stimulate the development of novel therapeutic agents. In this study, we investigated the potential regulation of α cell function by G proteins of the Gq family. The use of a chemogenetic strategy allowed us to selectively activate Gq signaling in mouse α cells in vitro and in vivo. Acute stimulation of α cell Gq signaling led to elevated plasma glucagon levels, accompanied by increased insulin release and improved glucose tolerance. Moreover, chronic activation of this pathway greatly improved glucose tolerance in obese mice. We also identified an endogenous Gq-coupled receptor (vasopressin 1b receptor; V1bR) that was enriched in mouse and human α cells. Agonist-induced activation of the V1bR strongly stimulated glucagon release in a Gq-dependent fashion. In vivo studies indicated that V1bR-mediated glucagon release played a key role in the counterregulatory hyperglucagonemia under hypoglycemic and glucopenic conditions. These data indicate that α cell Gq signaling represents an important regulator of glucagon secretion, resulting in multiple beneficial metabolic effects. Thus, drugs that target α cell-enriched Gq-coupled receptors may prove useful to restore euglycemia in various pathophysiological conditions.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hipoglicemiantes/metabolismo , Transdução de Sinais/imunologia , Animais , Humanos , Masculino , Camundongos
7.
Int Immunopharmacol ; 81: 106267, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32044662

RESUMO

A key feature of type 2 diabetes (T2D) is that beta-cells of the pancreatic islets fail to release sufficient amounts of insulin to overcome peripheral insulin resistance. Glucose-stimulated insulin secretion (GSIS) is regulated by the activity of numerous neurotransmitters, hormones and paracrine factors that act by stimulating specific G protein-coupled receptors expressed by pancreatic beta-cells. Studies with both mouse and human islets suggest that acetylcholine (ACh) acts on beta-cell M3 muscarinic receptors (M3Rs) to promote GSIS. In mouse islets, beta-cell M3Rs are thought to be activated by ACh released from parasympathetic nerve endings. Interestingly, studies with human pancreatic islets suggest that ACh is synthesized, stored and released by alpha-cells, which, in human pancreatic islets, are intermingled with beta-cells. Independent of the source of pancreatic islet ACh, recent studies indicate that beta-cell M3Rs represent a potential target for drugs capable of promoting insulin release for therapeutic purposes. In this review, we will provide an overview about signaling pathways and molecules that regulate the activity of beta-cell M3Rs. We will also discuss a novel pharmacological strategy to stimulate the activity of these receptors to reduce the metabolic impairments associated with T2D.


Assuntos
Acetilcolina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Receptor Muscarínico M3/metabolismo , Receptores Colinérgicos/metabolismo , Regulação Alostérica , Animais , Diabetes Mellitus Tipo 2/terapia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Terapia de Alvo Molecular
8.
Proc Natl Acad Sci U S A ; 116(37): 18684-18690, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451647

RESUMO

Given the global epidemic in type 2 diabetes, novel antidiabetic drugs with increased efficacy and reduced side effects are urgently needed. Previous work has shown that M3 muscarinic acetylcholine (ACh) receptors (M3Rs) expressed by pancreatic ß cells play key roles in stimulating insulin secretion and maintaining physiological blood glucose levels. In the present study, we tested the hypothesis that a positive allosteric modulator (PAM) of M3R function can improve glucose homeostasis in mice by promoting insulin release. One major advantage of this approach is that allosteric agents respect the ACh-dependent spatiotemporal control of M3R activity. In this study, we first demonstrated that VU0119498, a drug known to act as a PAM at M3Rs, significantly augmented ACh-induced insulin release from cultured ß cells and mouse and human pancreatic islets. This stimulatory effect was absent in islets prepared from mice lacking M3Rs, indicative of the involvement of M3Rs. VU0119498 treatment of wild-type mice caused a significant increase in plasma insulin levels, accompanied by a striking improvement in glucose tolerance. These effects were mediated by ß-cell M3Rs, since they were absent in mutant mice selectively lacking M3Rs in ß cells. Moreover, acute VU0119498 treatment of obese, glucose-intolerant mice triggered enhanced insulin release and restored normal glucose tolerance. Interestingly, doses of VU0119498 that led to pronounced improvements in glucose homeostasis did not cause any significant side effects due to activation of M3Rs expressed by other peripheral cell types. Taken together, the data from this proof-of-concept study strongly suggest that M3R PAMs may become clinically useful as novel antidiabetic agents.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M3/efeitos dos fármacos , Acetilcolina/metabolismo , Adulto , Regulação Alostérica/efeitos dos fármacos , Animais , Glicemia/análise , Glicemia/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Pessoa de Meia-Idade , Agonistas Muscarínicos/uso terapêutico , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Cultura Primária de Células , Estudo de Prova de Conceito , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Adulto Jovem
9.
Mol Metab ; 26: 45-56, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31178390

RESUMO

OBJECTIVE: Pancreatic ß cell failure plays a central role in the development of type 2 diabetes (T2D). While the transcription factors shaping the ß cell gene expression program have received much attention, the post-transcriptional controls that are activated in ß cells during stress are largely unknown. We recently identified JUND as a pro-oxidant transcription factor that is post-transcriptionally upregulated in ß cells during metabolic stress. Here we seek to uncover the mechanisms underlying this maladaptive response to metabolic stress. METHODS: RNA-protein and protein-protein interactions were measured using RNA immunoprecipitation and co-immunoprecipitation, respectively, in Min6 cells and mouse islets. Phos-tag analyses were used to assess hnRNPK phosphorylation in primary mouse and human islets and Min6 cells. Translating ribosome affinity purification (TRAP) followed by RT-qPCR was used to identify changes in the ribosome occupancy of mRNAs in Min6 cells. Gene depletion studies used lentiviral delivery of CRISPR-Cas9 to Min6 cells. Apoptosis was measured in primary islets using a cell-permeable dye with a fluorescence readout of activated cleaved caspase-3 and-7. RESULTS: A de novo motif analysis was performed on a subset of genes previously found to be regulated at the level of ribosome binding during PDX1-deficiency, which identified a poly-cytosine (polyC) motif in the 3'UTR of the transcript encoding JUND. The polyC-binding protein hnRNPK bound to the mRNA encoding JUND, leading us to hypothesize that hnRNPK regulates JUND expression during glucolipotoxicity. Indeed, loss of hnRNPK blocked the post-transcriptional upregulation of JUND during metabolic stress. hnRNPK was phosphorylated in mouse and human islets during glucolipotoxicity and in islets of diabetic db/db mice. The MEK/ERK signaling pathway was both necessary and sufficient for the phosphorylation of hnRNPK, upregulation of JUND levels, and induction of pro-oxidant and pro-inflammatory genes. Further, we identified the RNA helicase DDX3X as a new binding partner for hnRNPK that is required for efficient translation of JUND mRNA. Loss of hnRNPK reduced DDX3X binding to translation machinery, suggesting that these factors cooperate to regulate translation in ß cells. CONCLUSIONS: Our results identify a novel ERK/hnRNPK/DDX3X pathway that influences ß cell survival and is activated under conditions associated with T2D.


Assuntos
RNA Helicases DEAD-box/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Células Secretoras de Insulina/metabolismo , Estresse Fisiológico , Animais , RNA Helicases DEAD-box/genética , Diabetes Mellitus Tipo 2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos
10.
JCI Insight ; 52019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31012868

RESUMO

Glucagon, a hormone released from pancreatic alpha-cells, plays a key role in maintaining proper glucose homeostasis and has been implicated in the pathophysiology of diabetes. In vitro studies suggest that intra-islet glucagon can modulate the function of pancreatic beta-cells. However, because of the lack of suitable experimental tools, the in vivo physiological role of this intra-islet cross-talk has remained elusive. To address this issue, we generated a novel mouse model that selectively expressed an inhibitory designer G protein-coupled receptor (Gi DREADD) in α-cells only. Drug-induced activation of this inhibitory designer receptor almost completely shut off glucagon secretion in vivo, resulting in significantly impaired insulin secretion, hyperglycemia, and glucose intolerance. Additional studies with mouse and human islets indicated that intra-islet glucagon stimulates insulin release primarily by activating ß-cell GLP-1 receptors. These new findings strongly suggest that intra-islet glucagon signaling is essential for maintaining proper glucose homeostasis in vivo. Our work may pave the way toward the development of novel classes of antidiabetic drugs that act by modulating intra-islet cross-talk between α- and ß-cells.


Assuntos
Glicemia/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Hiperglicemia/fisiopatologia , Células Secretoras de Insulina/metabolismo , Comunicação Parácrina/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Glucagon/sangue , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Humanos , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Insulina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Comunicação Parácrina/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Mol Metab ; 25: 95-106, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023625

RESUMO

OBJECTIVE: In type 2 diabetes (T2D), oxidative stress contributes to the dysfunction and loss of pancreatic ß cells. A highly conserved feature of the cellular response to stress is the regulation of mRNA translation; however, the genes regulated at the level of translation are often overlooked due to the convenience of RNA sequencing technologies. Our goal is to investigate translational regulation in ß cells as a means to uncover novel factors and pathways pertinent to cellular adaptation and survival during T2D-associated conditions. METHODS: Translating ribosome affinity purification (TRAP) followed by RNA-seq or RT-qPCR was used to identify changes in the ribosome occupancy of mRNAs in Min6 cells. Gene depletion studies used lentiviral delivery of shRNAs to primary mouse islets or CRISPR-Cas9 to Min6 cells. Oxidative stress and apoptosis were measured in primary islets using cell-permeable dyes with fluorescence readouts of oxidation and activated cleaved caspase-3 and-7, respectively. Gene expression was assessed by RNA-seq, RT-qPCR, and western blot. ChIP-qPCR was used to determine chromatin enrichment. RESULTS: TRAP-seq in a PDX1-deficiency model of ß cell dysfunction uncovered a cohort of genes regulated at the level of mRNA translation, including the transcription factor JUND. Using a panel of diabetes-associated stressors, JUND was found to be upregulated in mouse islets cultured with high concentrations of glucose and free fatty acid, but not after treatment with hydrogen peroxide or thapsigargin. This induction of JUND could be attributed to increased mRNA translation. JUND was also upregulated in islets from diabetic db/db mice and in human islets treated with high glucose and free fatty acid. Depletion of JUND in primary islets reduced oxidative stress and apoptosis in ß cells during metabolic stress. Transcriptome assessment identified a cohort of genes, including pro-oxidant and pro-inflammatory genes, regulated by JUND that are commonly dysregulated in models of ß cell dysfunction, consistent with a maladaptive role for JUND in islets. CONCLUSIONS: A translation-centric approach uncovered JUND as a stress-responsive factor in ß cells that contributes to redox imbalance and apoptosis during pathophysiologically relevant stress.


Assuntos
Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Estresse Fisiológico/fisiologia , Animais , Apoptose , Sistemas CRISPR-Cas , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos , Regulação da Expressão Gênica , Glucose/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , RNA Mensageiro/metabolismo , Transativadores/genética , Fatores de Transcrição
12.
Front Physiol ; 9: 1473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405433

RESUMO

Cardiovascular complications are the major cause of mortality and morbidity in diabetic patients. The changes in myocardial structure and function associated with diabetes are collectively called diabetic cardiomyopathy. Numerous molecular mechanisms have been proposed that could contribute to the development of diabetic cardiomyopathy and have been studied in various animal models of type 1 or type 2 diabetes. The current review focuses on the role of sodium (Na+) in diabetic cardiomyopathy and provides unique data on the linkage between Na+ flux and energy metabolism, studied with non-invasive 23Na, and 31P-NMR spectroscopy, polarography, and mass spectroscopy. 23Na NMR studies allow determination of the intracellular and extracellular Na+ pools by splitting the total Na+ peak into two resonances after the addition of a shift reagent to the perfusate. Using this technology, we found that intracellular Na+ is approximately two times higher in diabetic cardiomyocytes than in control possibly due to combined changes in the activity of Na+-K+ pump, Na+/H+ exchanger 1 (NHE1) and Na+-glucose cotransporter. We hypothesized that the increase in Na+ activates the mitochondrial membrane Na+/Ca2+ exchanger, which leads to a loss of intramitochondrial Ca2+, with a subsequent alteration in mitochondrial bioenergetics and function. Using isolated mitochondria, we showed that the addition of Na+ (1-10 mM) led to a dose-dependent decrease in oxidative phosphorylation and that this effect was reversed by providing extramitochondrial Ca2+ or by inhibiting the mitochondrial Na+/Ca2+ exchanger with diltiazem. Similar experiments with 31P-NMR in isolated superfused mitochondria embedded in agarose beads showed that Na+ (3-30 mM) led to significantly decreased ATP levels and that this effect was stronger in diabetic rats. These data suggest that in diabetic cardiomyocytes, increased Na+ leads to abnormalities in oxidative phosphorylation and a subsequent decrease in ATP levels. In support of these data, using 31P-NMR, we showed that the baseline ß-ATP and phosphocreatine (PCr) were lower in diabetic cardiomyocytes than in control, suggesting that diabetic cardiomyocytes have depressed bioenergetic function. Thus, both altered intracellular Na+ levels and bioenergetics and their interactions may significantly contribute to the pathology of diabetic cardiomyopathy.

13.
Mol Metab ; 6(10): 1240-1253, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031723

RESUMO

OBJECTIVES: Chronic hyperlipidemia and hyperglycemia are characteristic features of type 2 diabetes (T2DM) that are thought to cause or contribute to ß-cell dysfunction by "glucolipotoxicity." Previously we have shown that acute treatment of pancreatic islets with fatty acids (FA) decreases acetylcholine-potentiated insulin secretion. This acetylcholine response is mediated by M3 muscarinic receptors, which play a key role in regulating ß-cell function. Here we examine whether chronic FA exposure also inhibits acetylcholine-potentiated insulin secretion using mouse and human islets. METHODS: Islets were cultured for 3 or 4 days at different glucose concentration with 0.5 mM palmitic acid (PA) or a 2:1 mixture of PA and oleic acid (OA) at 1% albumin (PA/BSA molar ratio 3.3). Afterwards, the response to glucose and acetylcholine were studied in perifusion experiments. RESULTS: FA-induced impairment of insulin secretion and Ca2+ signaling depended strongly on the glucose concentrations of the culture medium. PA and OA in combination reduced acetylcholine potentiation of insulin secretion more than PA alone, both in mouse and human islets, with no evidence of a protective role of OA. In contrast, lipotoxicity was not observed with islets cultured for 3 days in medium containing less than 1 mM glucose and a mixture of glutamine and leucine (7 mM each). High glucose and FAs reduced endoplasmic reticulum (ER) Ca2+ storage capacity; however, preserving ER Ca2+ by blocking the IP3 receptor with xestospongin C did not protect islets from glucolipotoxic effects on insulin secretion. In contrast, an inhibitor of casein kinase 2 (CK2) protected the glucose dependent acetylcholine potentiation of insulin secretion in mouse and human islets against glucolipotoxicity. CONCLUSIONS: These results show that chronic FA treatment decreases acetylcholine potentiation of insulin secretion and that this effect is strictly glucose dependent and might involve CK2 phosphorylation of ß-cell M3 muscarinic receptors.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/fisiologia , Acetilcolina/metabolismo , Animais , Caseína Quinase II/metabolismo , Células Cultivadas , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Hiperlipidemias/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Receptores Muscarínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Nat Commun ; 8: 15677, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580955

RESUMO

Foxp3+ T regulatory (Treg) cells suppress immune cell activation and establish normal immune homeostasis. How Treg cells maintain their identity is not completely understood. Here we show that Ndfip1, a coactivator of Nedd4-family E3 ubiquitin ligases, is required for Treg cell stability and function. Ndfip1 deletion in Treg cells results in autoinflammatory disease. Ndfip1-deficient Treg cells are highly proliferative and are more likely to lose Foxp3 expression to become IL-4-producing TH2 effector cells. Proteomic analyses indicate altered metabolic signature of Ndfip1-deficient Treg cells and metabolic profiling reveals elevated glycolysis and increased mTORC1 signalling. Ndfip1 restricts Treg cell metabolism and IL-4 production via distinct mechanisms, as IL-4 deficiency does not prevent hyperproliferation or elevated mTORC1 signalling in Ndfip1-deficient Treg cells. Thus, Ndfip1 preserves Treg lineage stability and immune homeostasis by preventing the expansion of highly proliferative and metabolically active Treg cells and by preventing pathological secretion of IL-4 from Treg cells.


Assuntos
Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Animais , Apresentação de Antígeno , Membrana Celular/metabolismo , Proliferação de Células , Feminino , Fatores de Transcrição Forkhead/metabolismo , Glicólise , Receptores de Hialuronatos/metabolismo , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-4/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteômica , Células Th2/imunologia , Ubiquitinação
15.
Nat Commun ; 8: 14295, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145434

RESUMO

ß-arrestins are critical signalling molecules that regulate many fundamental physiological functions including the maintenance of euglycemia and peripheral insulin sensitivity. Here we show that inactivation of the ß-arrestin-2 gene, barr2, in ß-cells of adult mice greatly impairs insulin release and glucose tolerance in mice fed with a calorie-rich diet. Both glucose and KCl-induced insulin secretion and calcium responses were profoundly reduced in ß-arrestin-2 (barr2) deficient ß-cells. In human ß-cells, barr2 knockdown abolished glucose-induced insulin secretion. We also show that the presence of barr2 is essential for proper CAMKII function in ß-cells. Importantly, overexpression of barr2 in ß-cells greatly ameliorates the metabolic deficits displayed by mice consuming a high-fat diet. Thus, our data identify barr2 as an important regulator of ß-cell function, which may serve as a new target to improve ß-cell function.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais/genética , beta-Arrestina 2/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dieta Hiperlipídica , Expressão Gênica , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , beta-Arrestina 2/metabolismo
16.
Proc Natl Acad Sci U S A ; 112(49): E6818-24, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598688

RESUMO

G protein-coupled receptors (GPCRs) regulate virtually all physiological functions including the release of insulin from pancreatic ß-cells. ß-Cell M3 muscarinic receptors (M3Rs) are known to play an essential role in facilitating insulin release and maintaining proper whole-body glucose homeostasis. As is the case with other GPCRs, M3R activity is regulated by phosphorylation by various kinases, including GPCR kinases and casein kinase 2 (CK2). At present, it remains unknown which of these various kinases are physiologically relevant for the regulation of ß-cell activity. In the present study, we demonstrate that inhibition of CK2 in pancreatic ß-cells, knockdown of CK2α expression, or genetic deletion of CK2α in ß-cells of mutant mice selectively augmented M3R-stimulated insulin release in vitro and in vivo. In vitro studies showed that this effect was associated with an M3R-mediated increase in intracellular calcium levels. Treatment of mouse pancreatic islets with CX4945, a highly selective CK2 inhibitor, greatly reduced agonist-induced phosphorylation of ß-cell M3Rs, indicative of CK2-mediated M3R phosphorylation. We also showed that inhibition of CK2 greatly enhanced M3R-stimulated insulin secretion in human islets. Finally, CX4945 treatment protected mice against diet-induced hyperglycemia and glucose intolerance in an M3R-dependent fashion. Our data demonstrate, for the first time to our knowledge, the physiological relevance of CK2 phosphorylation of a GPCR and suggest the novel concept that kinases acting on ß-cell GPCRs may represent novel therapeutic targets.


Assuntos
Caseína Quinase II/fisiologia , Insulina/metabolismo , Receptor Muscarínico M3/fisiologia , Animais , Células COS , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naftiridinas/farmacologia , Fenazinas
17.
Cell Biochem Funct ; 33(2): 67-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25663655

RESUMO

Adenylate kinase plays an important role in cellular energy homeostasis by catalysing the interconversion of adenine nucleotides. The goal of present study was to evaluate the contribution of the adenylate kinase reaction to oxidative ATP synthesis by direct measurements of ATP using (31) P NMR spectroscopy. Results show that AMP can stimulate ATP synthesis in the presence or absence of ADP. In particular, addition of 1 mM AMP to the 0.6 mM ADP superfusion system of isolated superfused mitochondria (contained and maintained in agarose beads) led to a 25% increase in ATP synthesis as measured by the increase in ßATP signal. More importantly, we show that AMP can support ATP synthesis in the absence of ADP, demonstrated as follows. Superfusion of mitochondria without ADP led to the disappearance of ATP γ, α and ß signals and the increase of Pi . Addition of AMP to the medium restored the production of ATP, as demonstrated by the reappearance of γ, α and ß ATP signals, in conjunction with a decrease in Pi , which is being used for ATP synthesis. Polarographic studies showed Mg(2+) dependence of this process, confirming the specificity of the adenylate kinase reaction. Furthermore, data obtained from this study demonstrate, for the first time, that different aspects of the adenylate kinase reaction can be evaluated with (31) P NMR spectroscopy. SIGNIFICANCE OF RESEARCH PARAGRAPH: The data generated in the present study indicate that (31) P NMR spectroscopy can effectively be used to study the adenylate kinase reaction under a variety of conditions. This is important because understanding of adenylate kinase function and/or malfunction is essential to understanding its role in health and disease. The data obtained with (31) P NMR were confirmed by polarographic studies, which further strengthens the robustness of the NMR findings. In summary, (31) P NMR spectroscopy provides a sensitive tool to study adenylate kinase activity in different physiological and pathophysiological conditions, including but not exclusive of, cancer, ischemic injury, hemolytic anemia and neurological problems such as sensorineural deafness.


Assuntos
Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Consumo de Oxigênio , Animais , Espectroscopia de Ressonância Magnética/métodos , Polarografia/métodos , Ratos
18.
Diabetes ; 64(1): 193-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25125487

RESUMO

Loss-of-function mutations affecting the cholesterol transporter ATP-binding cassette transporter subfamily A member 1 (ABCA1) impair cellular cholesterol efflux and are associated with reduced HDL-cholesterol (HDL-C) levels. ABCA1 may also be important in regulating ß-cell cholesterol homeostasis and insulin secretion. We sought to determine whether loss-of-function ABCA1 mutations affect ß-cell secretory capacity in humans by performing glucose-potentiated arginine tests in three subjects homozygous for ABCA1 mutations (age 25 ± 11 years), eight heterozygous subjects (28 ± 7 years), and eight normal control subjects pair-matched to the heterozygous carriers. To account for any effect of low HDL-C on insulin secretion, we studied nine subjects with isolated low HDL-C with no ABCA1 mutations (age 26 ± 6 years) and nine pair-matched control subjects. Homozygotes for ABCA1 mutations exhibited enhanced oral glucose tolerance and dramatically increased ß-cell secretory capacity that was also greater in ABCA1 heterozygous subjects than in control subjects, with no differences in insulin sensitivity. Isolated low HDL-C subjects also demonstrated an increase in ß-cell secretory capacity but in contrast to those with ABCA1 mutations, exhibited impaired insulin sensitivity, supporting ß-cell compensation for increased insulin demand. These data indicate that loss-of-function mutations in ABCA1 in young adults may be associated with enhanced ß-cell secretory capacity and normal insulin sensitivity and support the importance of cellular cholesterol homeostasis in regulating ß-cell insulin secretion.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Adolescente , Adulto , Glicemia/metabolismo , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Heterozigoto , Homeostase/fisiologia , Homozigoto , Humanos , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Masculino , Mutação , Adulto Jovem
19.
Mol Metab ; 4(12): 926-39, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26909309

RESUMO

OBJECTIVES: Hyperglycemia and elevated blood lipids are the presumed precipitating causes of ß-cell damage in T2DM as the result of a process termed "glucolipotoxicity". Here, we tested whether glucolipotoxic pathophysiology is caused by defective bioenergetics using islets in culture. METHODS: Insulin secretion, respiration, ATP generation, fatty acid (FA) metabolite profiles and gene expression were determined in isolated islets treated under glucolipotoxic culture conditions. RESULTS: Over time, chronic exposure of mouse islets to FAs with glucose leads to bioenergetic failure and reduced insulin secretion upon stimulation with glucose or amino acids. Islets exposed to glucolipotoxic conditions displayed biphasic changes of the oxygen consumption rate (OCR): an initial increase in baseline and Vmax of OCR after 3 days, followed by decreased baseline and glucose stimulated OCR after 5 days. These changes were associated with lower islet ATP levels, impaired glucose-induced ATP generation, a trend for reduced mitochondrial DNA content and reduced expression of mitochondrial transcription factor A (Tfam). We discovered the accumulation of carnitine esters of hydroxylated long chain FAs, in particular 3-hydroxytetradecenoyl-carnitine. CONCLUSIONS: As long chain 3-hydroxylated FA metabolites are known to uncouple heart and brain mitochondria [53], [54], [55], we propose that under glucolipotoxic condition, unsaturated hydroxylated long-chain FAs accumulate, uncouple and ultimately inhibit ß-cell respiration. This leads to the slow deterioration of mitochondrial function progressing to bioenergetics ß-cell failure.

20.
PLoS One ; 9(2): e86815, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505268

RESUMO

The reduction of functional ß cell mass is a key feature of type 2 diabetes. Here, we studied metabolic functions and islet gene expression profiles of C57BL/6J mice with naturally occurring nicotinamide nucleotide transhydrogenase (NNT) deletion mutation, a widely used model of diet-induced obesity and diabetes. On high fat diet (HF), the mice developed obesity and hyperinsulinemia, while blood glucose levels were only mildly elevated indicating a substantial capacity to compensate for insulin resistance. The basal serum insulin levels were elevated in HF mice, but insulin secretion in response to glucose load was significantly blunted. Hyperinsulinemia in HF fed mice was associated with an increase in islet mass and size along with higher BrdU incorporation to ß cells. The temporal profiles of glucose-stimulated insulin secretion (GSIS) of isolated islets were comparable in HF and normal chow fed mice. Islets isolated from HF fed mice had elevated basal oxygen consumption per islet but failed to increase oxygen consumption further in response to glucose or carbonyl cyanide-4-trifluoromethoxyphenylhydrazone (FCCP). To obtain an unbiased assessment of metabolic pathways in islets, we performed microarray analysis comparing gene expression in islets from HF to normal chow-fed mice. A few genes, for example, those genes involved in the protection against oxidative stress (hypoxia upregulated protein 1) and Pgc1α were up-regulated in HF islets. In contrast, several genes in extracellular matrix and other pathways were suppressed in HF islets. These results indicate that islets from C57BL/6J mice with NNT deletion mutation develop structural, metabolic and gene expression features consistent with compensation and decompensation in response to HF diet.


Assuntos
Gorduras na Dieta/efeitos adversos , Fator 1 Induzível por Hipóxia/biossíntese , Células Secretoras de Insulina/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Deleção de Genes , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Fator 1 Induzível por Hipóxia/genética , Insulina/sangue , Células Secretoras de Insulina/patologia , Camundongos , Proteínas Mitocondriais/genética , NADP Trans-Hidrogenase Específica para A ou B/genética , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...